23,210 research outputs found

    Parrondo's games with chaotic switching

    Full text link
    This paper investigates the different effects of chaotic switching on Parrondo's games, as compared to random and periodic switching. The rate of winning of Parrondo's games with chaotic switching depends on coefficient(s) defining the chaotic generator, initial conditions of the chaotic sequence and the proportion of Game A played. Maximum rate of winning can be obtained with all the above mentioned factors properly set, and this occurs when chaotic switching approaches periodic behavior.Comment: 11 pages, 9 figure

    In-trail dynamics of multiple CDTI-equipped aircraft queues

    Get PDF
    One of the potential problems of in-trail self-spacing with a Cockpit Display of Traffic Information (CDTI) is whether dynamic oscillations would occur in a queue of aircraft flying an approach, similar to the ""accordion'' effect seem with the queue of automobiles in stop-and-go traffic. In order to gain some insight into this potential problem, a brief experiment was conducted with the Transport Systems Research Vehicle (TSRV) ground-based simulator equipped with CDTI which presented the position of other aircraft in the area. Three simulation sessions were conducted wherein queues of up to nine aircraft were built, each one self-spacing on the preceding aircraft. The aircraft crews were rotated to ensure that the pilots had no prior knowledge of the lead aircraft behavior they would be following. Two different spacing criteria were employed: a constant time predictor criterion and a constant time delay criterion. The experiment failed to uncover any dynamic oscillatory tendencies in queues of seven to nine aircraft

    Effect of display size on utilization of traffic situation display for self-spacing task

    Get PDF
    The weather radar cathode ray tube (CRT) is the prime candidate for presenting cockpit display of traffic information (CDTI) in current, conventionally equipped transport aircraft. Problems may result from this, since the CRT size is not optimized for CDTI applications and the CRT is not in the pilot's primary visual scan area. The impact of display size on the ability of pilots to utilize the traffic information to maintain a specified spacing interval behind a lead aircraft during an approach task was studied. The five display sizes considered are representative of the display hardware configurations of airborne weather radar systems. From a pilot's subjective workload viewpoint, even the smallest display size was usable for performing the self spacing task. From a performane viewpoint, the mean spacing values, which are indicative of how well the pilots were able to perform the task, exhibit the same trends, irrespective of display size; however, the standard deviation of the spacing intervals decreased (performance improves) as the display size increased. Display size, therefore, does have a significant effect on pilot performance

    A route generator concept for aircraft onboard fault monitoring

    Get PDF
    Because of the increasingly complex environments in which the flight crews of commercial aviation aircraft must operate, a research effort is currently underway at NASA Langley Research Center to investigate the potential benefits of intelligent cockpit aids, and to establish guidelines for the application of artificial intelligence techniques to advanced flight management concepts. The segment of this research area that concentrates on automated fault monitoring and diagnosis requires that a reference frame exist, against which the current state of the aircraft may be compared to determine the existence of a fault. This paper describes a computer program which generates the position of that reference frame that specifies the horizontal flight route

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO-Virgo\u27s Third Observing Run

    Get PDF
    We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses

    Search full text options here 1 of 1 Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86-97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537-6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation

    The Electroweak Interactions as a Confinement Phenomenon

    Full text link
    We consider a model for the electroweak interactions based on the assumption that physical particles are singlets under the gauge group SU(2). The concept of complementarity explains why the standard model works with such an extraordinary precision although the fermions and bosons of the model can be viewed as composite objects of some more fundamental fermions and bosons. We study the incorporation of QED in the model. Furthermore we consider possible deviations from the standard model at very high energies, e.g. excited states of the weak bosons.Comment: 15 pages, 1 figure, to appear in Physics Letters

    Magnification effect on the detection of primordial non-Gaussianity from photometric surveys

    Full text link
    We present forecast results for constraining the primordial non-Gaussianity from photometric surveys through a large-scale enhancement of the galaxy clustering amplitude. In photometric surveys, the distribution of observed galaxies at high redshifts suffers from the gravitational-lensing magnification, which systematically alters the number density for magnitude-limited galaxy samples. We estimate size of the systematic bias in the best-fit cosmological parameters caused by the magnification effect, particularly focusing on the primordial non-Gaussianity. For upcoming deep and/or wide photometric surveys like HSC, DES and LSST, the best-fit value of the non-Gaussian parameter, fNL, obtained from the galaxy count data is highly biased, and the true values of fNL would typically go outside the 3-sigma error of the biased confidence region, if we ignore the magnification effect in the theoretical template of angular power spectrum. The additional information from cosmic shear data helps not only to improve the constraint, but also to reduce the systematic bias. As a result, the size of systematic bias on fNL would become small enough compared to the expected 1-sigma error for HSC and DES, but it would be still serious for deep surveys with z_m > 1.5, like LSST. Tomographic technique improves the constraint on fNL by a factor of 2-3 compared to the one without tomography, but the systematic bias would increase.Comment: 12 pages, 10 figure
    • …
    corecore